Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2312297121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38236734

RESUMO

Natural species have developed complex nanostructures in a hierarchical pattern to control the absorption, reflection, or transmission of desired solar and infrared wavelengths. This bio-inspired structure is a promising method to manipulating solar energy and thermal management. In particular, human hair is used in this article to highlight the optothermal properties of bio-inspired structures. This study investigated how melanin, an effective solar absorber, and the structural morphology of aligned domains of keratin polymer chains, leading to a significant increase in solar path length, which effectively scatter and absorb solar radiation across the hair structure, as well as enhance thermal ramifications from solar absorption by fitting its radiative wavelength to atmospheric transmittance for high-yield radiative cooling with realistic human body thermal emission.


Assuntos
Energia Solar , Humanos , Transição de Fase , Temperatura Baixa , Citoesqueleto , Cabelo
2.
ACS Appl Mater Interfaces ; 15(12): 16026-16033, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920422

RESUMO

Radiative cooling has attracted tremendous interest as it can tackle global warming by saving energy consumption in heating, ventilation, and air conditioning (HVAC) in buildings. Polymer materials play an important role in radiative cooling owing to their high infrared emissivity. Along this line, numerous studies on optically optimized geometries were carried out to enhance the selective wavelength absorption for high infrared emissivity; however, the polymer material itself relatively was not investigated and optimized enough. Herein, we investigate the infrared radiation (IR) absorption coefficient of various polymer types, and introduce a new concept of radiative-cooling composites. By dispersing the IR scattering medium in a polymer matrix, IR can be effectively scattered and attenuated by the polymer matrix. Indium tin oxide was utilized as the IR scattering medium in a cellulose acetate polymer matrix in this report. The window film was made with this composite and showed an effective cooling performance by outdoor thermal evaluation. This composite opens a new venue to endow materials with enhanced radiative-cooling property regardless of the polymer types.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32454857

RESUMO

BACKGROUND: Iranian traditional medicine (ITM) is a holistic medical system that uses a wide range of medicinal substances to treat disease. Reorganization and standardization of the data on ITM concepts is a necessity for optimal use of this rich source. In an initial step towards this goal, we created a database of ITM materia medica. Main Body. Primarily based on Makhzan al-Advieh, which is the most recent encyclopedia of materia medica in ITM with the largest number of monographs, a database of natural medicinal substances was created using both text mining methods and manual editing. UNaProd, a Universal Natural Product database for materia medica of ITM, is currently host to 2696 monographs, from herbal to animal to mineral compounds in 16 diverse attributes such as origin and scientific name. Currently, systems biology, and more precisely systems medicine and pharmacology, can be an aid in providing rationalizations for many traditional medicines and elucidating a great deal of knowledge they can offer to guide future research in medicine. CONCLUSIONS: A database of materia medica is a stepping stone in creating a systems pharmacology platform of ITM that encompasses the relationships between the drugs, their targets, and diseases. UNaProd is hyperlinked to IrGO and CMAUP databases for Mizaj and molecular features, respectively, and it is freely available at http://jafarilab.com/unaprod/.

4.
J Sep Sci ; 43(14): 2897-2904, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32396240

RESUMO

Magnetic dispersive solid-phase extraction followed by dispersive liquid-liquid microextraction coupled with gas chromatography/mass spectrometry was applied for the quantitative analysis of phenazopyridine in urinary samples. Magnetic dispersive solid-phase extraction was carried out using magnetic graphene oxide nanoparticles modified by poly(thiophene-pyrrole) copolymer. The eluting solvent of this step was used as the disperser solvent for the dispersive liquid-liquid microextraction procedure. To reach the maximum efficiency of the method, effective parameters including sorbent amount, adsorption time, type and volume of disperser and extraction solvents, pH of the sample solution, and ionic strength as well as desorption time, and approach were optimized, separately. Characterization of the synthesized sorbent was studied by utilizing infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analysis. Calibration curve was linear in the range of 0.5-250 ng/mL (R2  = 0.9988) with limits of detection and quantification of 0.1 and 0.5 ng/mL, respectively. Intra- and interday precisions (RSD%, n = 3) of the method were in the range of 4.6-5.4% and 4.0-5.5%, respectively, at three different concentration levels. Under the optimal condition, this method was successfully applied for the determination of phenazopyridine in human urine samples. The relative recoveries were obtained in the range of 85.0-89.0%.


Assuntos
Microextração em Fase Líquida , Fenazopiridina/urina , Extração em Fase Sólida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Fenômenos Magnéticos , Fenazopiridina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...